G52CPP
C++ Programming
Lecture 9

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

L ast lecture

const
— Constants, including pointers

The C pre-processor
— And macros

Compiling and linking
— And multiple header files
Linkage and visibility

Demos of these things later today

Avoiding multiple inclusion

e Code to include the contents of a file only once:
#ifndef UNIQUE_DEFINE_NAME_FOR_FILE

#define UNIQUE_DEFINE_NAME_FOR_FILE
... Include the rest of the file here ...
#endif

 To work, the name In the #define has to be
unique throughout the program

— E.g. you probably should include the path of the
header file, not just the filename

— Example: mycode/game/graphics/screen.h could be
called MYCODE_GAME_GRAPHICS _SCREEN_H

— By convention, #defines are in upper case

Example coursework file

#ifndef DISPLAYABLEOBJECT_H <— |[f not already marked as included
#define DISPLAYABLEOBJECT_H <— Mark it as included now, by setting the #define

#include "BaseEngine.h" Includes the header files it needs

class DisplayableObject

{

public:
/I Constructor
DisplayableObject(BaseEngine* pEngine);
I/l Destructor
virtual ~DisplayableObiject(void);

private:
/[True if item is visible
bool m_bVisible;

3

#endif End of the #ifdef around the contents

4

Three rules for header files

1. Ensure that the header file #include s
everything that it needs itself
— l.e. #include any headers it depends upon

2. Ensure that it doesn’t matter if the
header file Is included multiple times
— See previous slides
3. Ensure that header files can be included
In any order
— A consequence of the first two rules

#define and macro definitions

e YOU can use #define to define a macro:
#define max(a,b) (((a)>(b)) ? (a) : (b))

int vl = max(40, 234);
int vl = (((40)>(234)) ? (40) : (234))

Int v2 = max(vl, 99);
int v2 =(((v1)>(99)) ? (v1) : (99))

Int v3 =max (vl, v2);
Int v3 = (((v1)>(v2)) ? (v1) : (v2))

« Remember: done by the pre-processor!
— NOT a function call

What Is the output here?

MyHeader.h

#ifndef MY_HEADER_H
#define MY _HEADER_H

#define max(a,b) (((a)>(b)) ? (a) : (b))

#endif

MyTest.cpp

#include <cstdio>

#include “MyHeader.h”
int main(int argc, char* argv[])

{
int a=1,b=1;
while (a<10)
{
printf(“a = %d, b =%d “, a, b);
printf(“max = %d\n”, max(a++,b++));
}

The (surprise?) output

printf(“a = %d, b = %d “, a, b);
printf(“max = %d\n”, max(a++,b++));
 The output is:
a=1,b=1max=2
b=3max=4
b=5max=6
b=7max=8
b=9max =10
b=11 max =12
b=13max =14
b=15max =16
b=17 max =18

LYY
T T T I [TR TR T
LoNoOR~WN

o« Why?
max(a++, b++) expands to:
((at++)>(b++)) ? (a++) : (b++)
e S0, whichever number is greater will get incremented
twice, and the lesser number only once

Warning about macros

Do not use a macro where the evaluation
of the parameters may have a side-effect

e E.Q.
max(a ++,b++)

« Evaluating these parameters alters a value
— A side-effect

This lecture

e class es (and C++ struct

e Member functions

e Inline

functions

S)

10

classes and structs

A very quick introduction
Something to refer back to
Differences between C++ and Java

C++ vs C structs

Can still use struct sin C++

Everything for structs so far applies to both C and C++

— We will call them C-style structs

If you use only C features , struct s in C++ work as for
C, i.e. you can predict sizeof() , can malloc() space
for them, etc

— Everything we have seen so far is valid

In C++ you can add functions to struct s

If you use ANY C++ only features (e.g. add functions or
use inheritance), their behaviour may change

— If you have used ANY C++ only features, DO NOT try to treat
them as C structs — you may get a nasty surprise

— e.g. size may grow or it may have hidden parts (see later lectures)
12

classes and structs

class es and struct s are (almost) the same
thing In C++

The difference is (ONLY!!!) In encapsulation
—struct defaults to public, class to private

Everything you do witha class in C++ could
also be done with a struct

Common coding practice in C++:

— Data only and no member functions: use a struct

* You get the guarantees about size and positions of member
data that you get in a C struct

— If you add member functions, use a class
— Advice: use struct only for C-type struct s,

Methods / member functions

e |n C++, functions can be made class /struct members
— Just like Java functions

#include <cstdio>

struct Print

{
void print() { printf("Test\n"); }

J

int main() Create a struct onstackasin C
{ /
Print p; Call a method on the struct
p.print(); « If we had a struct* we would use
} | p->print();

14

Hiding data inside classes (or structs)

e Data and methods in a class have either public
or private access

— There Is also protected — we will see later
 public methods and data can be accessed by
anything
— Like non-static global functions/data in a file
e private methods and data can only be
accessed by other members of the SAME class
— Like static global functions/data in a file

 Note: There Is no ‘package only’ access

e class members default to private access
o struct members default to public access

15

Methods/functions and data

Data should (usually) be private
— If it is not, then have a VERY good justification

Methods (functions) should be:
private for internal use only
public for the external class interface

The values of the data members comprise the state
of the object

Interface methods can be:
Mutators — change the ‘state’ of the object
Accessors — only query values, no changes

Note: inline functions (see later) for methods ensure that
It IS no slower at runtime to use accessors than to use
the variable names

16

public and private

e Keyword private: will change access to
private from then onwards

« Keyword public: will change access to public

CIaSS DemOCIaSS public: for the interface
{ / Public from this point onward
public:

Int GetValue() { return m_iValue; }
void SetValue (int iValue)

{ m_iValue = iValue ;}
private: —
: - . private: for data and internal functions
Int m—lvalue’ Private from this point onwards

¥

17

Member functions and data

« Member data should be private

* Accessor and mutator functions could be public
Including ‘getters and setters’

class DemoClass

{
public:

Methods/member functions/operations

void SetValue (

Int GetValue() { return m_iValue; }

INt

{ m_IValue = iValue ;}

IValue)

private:

Int m_1Value;

Member data/attributes/state

b

Semi-colon at the end 18

Some advance knowledge...

You can use inheritance, e.g.:
class SubClass : public BaseClass

{ <Data and methods> }
— Like extends in Java

Member functions can access the data in class es or
struct s

— There is a hidden this pointer
» Like the hidden this object reference in Java

— Use this-> not this.

static member data and functions work as per Java,

shared between instances, no this pointer
19

Constructors and destructors

Constructors and Destructors

e Constructor
— Called when an object is created
— Has function name same as class name
— And no return type (none/empty, NOT void)

— Adding a constructor makes it impossible to provide a
C-style initialiser. e.g. ={0,1,2};
* Look back at the slides on initialisers for structs in C
* NoO constructor => you can use the C-style initialiser

e Destructor (similar to Java finalize)

— Called when an object is destroyed
— A function with name ~ then class name
 E.g.: ~DemoClass()

— And no return type 21

Example C++ class

class DemoClass

Constructor

{
DemoClass()

1}

~DemoClass() +«—

Destructor
No return type

1}

Int GetValue() const

Accessor
Access only, no changes
|deally label the function

with keyword ‘const

(see later lecture for why)

/

{ return m_iValue; }

void SetValue(int iValue) { m_iValue = iValue; }

private:
Int m_iValue;

Mutator. Mutates/changes the object

3 T

Data member/member variable/attribute

22

Constructor parameters

e YOU can pass parameters to constructors

* You can have multiple constructors
— Which differ in which parameter types they expect

— The compiler will consider which parameters are
passed in order to determine which constructor to use
* In the same way as functional overloading

— You are probably used to this from Java

 General C++ rule: if your code introduces
ambiguity (i.e. this could mean A or B) then it
will not compile

— If the constructor that the compiler should call is

ambiguous, the code will not compile! -

Passing parameters to constructors

1. Create a constructor which takes

parameters
— e.g. a constructor which takes an int

DemoClass(int IValue)
{...} [l'Inclass DemocClass

2. To create an object on the stack , passing
values to constructor use:

DemoClass myDemoClass (4) ;

24

Default parameters

In C++, parameters can have default values
— S0 can parameters In constructors

Use the ‘= <value> ' syntax following the
parameter declaration

e.g.: DemoClass(char* dummy,
Int IValue = -1)
{ *Nothing*/ }
Will match any of the following:
DemoClass myDemoClass3("Temp", 3);
DemoClass myDemoClass4("Temp");

Default values appear only in the function
declaration , not any separate definition

25

Default Constructor

 The ‘Default Constructor’ is a constructor
which can be called with no parameters
— e.g. one which has no parameters
— or has default values for all parameters

— A class can only have one default constructor
 More would introduce ambiguity

 \When you create arrays of objects, the
default constructor Is used (because no
parameters are provided):

e.g.: DemoClass myDemo Array[4]

)
26

Constructor parameters or not?

 Create an object, using default constructor
DemoClass myDemoClassi;

* Or create an object, passing values to the
constructor (selects the constructor to use)
DemoClass myDemoClass3("Temp");

IMPORTANT: Do NOT add empty brackets ()

when constructing on the stack if there are no
parameters!

— Compiler thinks you are declaring a function
— e.g. DemoClass myDemoClassl(); [l WRONG!!!

27

Basic types

Basic types can be Initialised in the same
way as classes (using the brackets)

Create an int (we have seen this a lot)
int Val =4; //Initialisation!

The () form can also be used for basic types
int 1Val (4); // Initialisation!

Both do exactly the same thing

28

Initialisation list

e Initialisation list allows you to pass values to:
— Data member constructors
— Base class constructors

 Usesthe () form of initialisation
— I.e. Initialisation values to use are inside ()
o Uses the : operator following the constructor

parameters (before the opening brace):
DemoClass(int iValue)

- m_1Value(iValue) -

U

Initialisation list, comma separated

29

Example Initialisation List

class DemoClass

{
public:

DemoClass(int iValue)
: m_iValue(iValue)

1}

~DemoClass() { ...}

Int GetValue() { return m_iValue; }

void SetValue(int iValue) { m_iValue = iIValue; }
private:

Int m_iValue;

J

30

Two ways to set member values

« With an int type data member called m_iValue

 Compare the following:
DemoClass(int iValue)
. m_iValue(iValue)
{}

* With the following:
DemocClass(int iValue)

{

m_iValue =iValue;

}
e Question: Are these the same?

31

Initialisation vs Assignment (1)

class DemoClass

{
public:

DemoClass(int iValue)
: m_iValue(iValue)

1}

DemoClass(int iValue)

Note: You could only have ONE of the following
In a class, since they have the same parameters

m_iValue s initialised
with value iValue

m_iValue is created

{

m_iValue = iValue;

but not initialised

<— | then the value of iValue
IS assigned to it

If it was an object (of type struct/class) it would
be initialised using default constructor,

then assigned
I.e. value would be set twice!

32

Initialisation vs Assignment (2)

Compare the following:
1) Int 1 =4, /[Initialisation

2) int |; // Uninitialised
] =4; /I Assignment

Initialisation lists are used a LOT in C++
— Should be used in preference to member assignment
Not available in Javal!

In Java you use super() to pass parameters to base class
constructor, and then just assign values to members in
the constructor

— In C++ you use the initialisation list for both
Initialisation list can be faster in some cases
— Avoids work from an unnecessary default (:onstructor33

Member data initialisation

« Member data is NOT always Initialised

—Basic types and pointers (e.g. Int
short orchar*) are NOT initialised

* You should always initialise them

—Default constructor is called for
members of type class/struct unless you
say otherwise (using initialisation list)

BIG WARNING TO YOU!!

(I am warning you because the compiler won’t!)

34

Inline functions
Member functions and data

Inline functions

Inline functions act exactly like normal functions but no
function call is made (code is put in caller function)

Use the keyword ‘inline ', e.q.:
inline Int max(int a,int b)
{returna>b ?a:Db;}

printf("%d\n", max(12,34));
Similar to a ‘safe’ macro expansion

— Safely replaces the function call with the code
» Unlike a macro (#define)

— Avoids the overhead of creating a stack frame
— Code gets included in EVERY file/function which calls it

VERY useful for small, fast functions
It is advice only: compiler can decide to ignore you

36

Function definitions ‘outside’ the class

* IN professional code, member functions are usually
defined outside of the class declaration

— In Java they are always defined within the class declaration, with
one class per file

e In C++ you usually have:
— Function declaration inside class declaration
— Function definition somewhere else
« With a ‘label’ to say it is a class member
 We use the scoping operator :: to label it
— Reason: allows hiding of the implementation
» Good program design, that Java’s policy makes very hard to do

* Defining functions within the class declaration implicitly
makes them inline

— As if they had ‘inline ’ on them

37

Class Declaration and Definition

class DemoClass

{
public:

DemoClass(intiValue =-1)

. m_iValue(ivValue) S——— These are all inline functions.
1} Do not actually exist in executable
/ as functions — their code is
~DemoClass() { ...} included INLINE in the caller
Int GetValue() { return m_iValue; } /
void SetValue(int iValue) { m_iValue = IValue; }
private:
Int m_iValue;
%

38

Defining class member functions

DemoClass.h —

class DemoClass

{
public:

DemoClass ——— |

(intiValue =-1),

~DemoClass(); —_

Int GetValue();

void SetValue(

DemocClass.cpp

#include "DemoClass.h"

|, DemoClass::DemoClass
(intiValue)
: m_iValue(iValue)

1}

—— DemoClass::~DemoClass()

— { ..}

™ int DemoClass::GetValue()
Int iValue); \ { return m_iValue; }

private:
Int m_iValue;

J

It void DemoClass::SetValue(
Int iValue)
{ m_iValue = Value; } 39

Note: Default value

DemocClass.h DemocClass.cpp
class DemoClass #include "DemoClass.h"
{
public: DemoClass::DemoClass

DemocClass (IintiValue)

(IntiValue =-1); . m_iValue(iValue)

{ ...}

~DemoClass();
Int GetValue();

_ Functions in C++ can have default values
void _Set_\/alue(for parameters. Specify these in the

int IValue); function declaration, not the definition
private:

Int m_iValue;

J

Demo lecture

* Please try the coursework lab A BEFORE the
demo lecture

e The coursework framework

— Class files and header files
— Function definitions outside the header file

— Constructors and destructors
e |nitialisation list

— Inline functions
— Mainfunction.cpp

* Also, inheritance (single) — base classes
— Base class : BaseGameEngine

41

Next lecture

e new and delete

e |Inheritance

e Virtual functions

42

