
1

G52CPP
C++ Programming

Lecture 9

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

2

Last lecture

• const
– Constants, including pointers

• The C pre-processor
– And macros

• Compiling and linking
– And multiple header files

• Linkage and visibility

• Demos of these things later today

3

Avoiding multiple inclusion

• Code to include the contents of a file only once:
#ifndef UNIQUE_DEFINE_NAME_FOR_FILE

#define UNIQUE_DEFINE_NAME_FOR_FILE

… include the rest of the file here …

#endif

• To work, the name in the #define has to be
unique throughout the program
– E.g. you probably should include the path of the

header file, not just the filename
– Example: mycode/game/graphics/screen.h could be

called MYCODE_GAME_GRAPHICS_SCREEN_H

– By convention, #defines are in upper case

4

Example coursework file
#ifndef DISPLAYABLEOBJECT_H

#define DISPLAYABLEOBJECT_H

#include "BaseEngine.h"

class DisplayableObject

{

public:

// Constructor

DisplayableObject(BaseEngine* pEngine);

// Destructor

virtual ~DisplayableObject(void);

private:

// True if item is visible

bool m_bVisible;

};

#endif

Includes the header files it needs

If not already marked as included
Mark it as included now, by setting the #define

End of the #ifdef around the contents

5

Three rules for header files

1. Ensure that the header file #include s
everything that it needs itself

– i.e. #include any headers it depends upon

2. Ensure that it doesn’t matter if the
header file is included multiple times

– See previous slides

3. Ensure that header files can be included
in any order

– A consequence of the first two rules

6

#define and macro definitions
• You can use #define to define a macro :

#define max(a,b) (((a)>(b)) ? (a) : (b))

int v1 = max(40, 234);

int v1 = (((40)>(234)) ? (40) : (234))

int v2 = max(v1, 99);

int v2 = (((v1)>(99)) ? (v1) : (99))

int v3 = max (v1, v2);

int v3 = (((v1)>(v2)) ? (v1) : (v2))

• Remember: done by the pre-processor!
– NOT a function call

7

What is the output here?

#ifndef MY_HEADER_H
#define MY_HEADER_H

#define max(a,b) (((a)>(b)) ? (a) : (b))

#endif

#include <cstdio>
#include “MyHeader.h”
int main(int argc, char* argv[])
{

int a = 1, b = 1;
while (a < 10)
{

printf(“a = %d, b = %d “, a, b);
printf(“max = %d\n”, max(a++,b++));

}
}

MyHeader.h

MyTest.cpp

8

The (surprise?) output
printf(“a = %d, b = %d “, a, b);
printf(“max = %d\n”, max(a++,b++));
• The output is:

a = 1, b = 1 max = 2
a = 2, b = 3 max = 4
a = 3, b = 5 max = 6
a = 4, b = 7 max = 8
a = 5, b = 9 max = 10
a = 6, b = 11 max = 12
a = 7, b = 13 max = 14
a = 8, b = 15 max = 16
a = 9, b = 17 max = 18

• Why?
max(a++, b++) expands to:

((a++)>(b++)) ? (a++) : (b++)
• So, whichever number is greater will get incremented

twice, and the lesser number only once

Warning about macros

• Do not use a macro where the evaluation
of the parameters may have a side-effect

• E.g.
max(a ++,b++)

• Evaluating these parameters alters a value
– A side-effect

9

10

This lecture

• class es (and C++ struct s)

• Member functions

• inline functions

11

classes and structs

A very quick introduction
Something to refer back to

Differences between C++ and Java

12

C++ vs C structs
• Can still use struct s in C++

• Everything for structs so far applies to both C and C++
– We will call them C-style structs

• If you use only C features , struct s in C++ work as for
C, i.e. you can predict sizeof() , can malloc() space
for them, etc
– Everything we have seen so far is valid

• In C++ you can add functions to struct s

• If you use ANY C++ only features (e.g. add functions or
use inheritance), their behaviour may change
– If you have used ANY C++ only features, DO NOT try to treat

them as C structs – you may get a nasty surprise

– e.g. size may grow or it may have hidden parts (see later lectures)

13

classes and structs
• class es and struct s are (almost) the same

thing in C++
• The difference is (ONLY!!!) in encapsulation

– struct defaults to public, class to private
• Everything you do with a class in C++ could

also be done with a struct

• Common coding practice in C++:
– Data only and no member functions: use a struct

• You get the guarantees about size and positions of member
data that you get in a C struct

– If you add member functions, use a class

– Advice: use struct only for C-type struct s

14

Methods / member functions

• In C++, functions can be made class /struct members
– Just like Java functions

#include <cstdio>

struct Print

{

void print() { printf("Test\n"); }

};

int main()

{

Print p;

p.print();

}

Call a method on the struct
If we had a struct* we would use
p->print();

Create a struct on stack as in C

15

Hiding data inside classes (or structs)

• Data and methods in a class have either public
or private access
– There is also protected – we will see later

• public methods and data can be accessed by
anything
– Like non-static global functions/data in a file

• private methods and data can only be
accessed by other members of the SAME class
– Like static global functions/data in a file

• Note: There is no ‘package only’ access
• class members default to private access
• struct members default to public access

16

Methods/functions and data
• Data should (usually) be private

– If it is not, then have a VERY good justification

• Methods (functions) should be:
private for internal use only
public for the external class interface

• The values of the data members comprise the state
of the object

• Interface methods can be:
Mutators – change the ‘state’ of the object
Accessors – only query values, no changes

• Note: inline functions (see later) for methods ensure that
it is no slower at runtime to use accessors than to use
the variable names

17

public and private
• Keyword private: will change access to

private from then onwards
• Keyword public: will change access to public

class DemoClass
{
public:

int GetValue() { return m_iValue; }
void SetValue (int iValue)

{ m_iValue = iValue ; }
private:

int m_iValue;
};

public: for the interface
Public from this point onward

private: for data and internal functions
Private from this point onwards

18

Member functions and data
• Member data should be private
• Accessor and mutator functions could be public

including ‘getters and setters’

class DemoClass
{
public:

int GetValue() { return m_iValue; }
void SetValue (int iValue)

{ m_iValue = iValue ; }
private:

int m_iValue;
};

Methods/member functions/operations

Member data/attributes/state

Semi-colon at the end

19

Some advance knowledge…

• You can use inheritance, e.g.:
class SubClass : public BaseClass

{ <Data and methods> }

– Like extends in Java

• Member functions can access the data in class es or
struct s
– There is a hidden this pointer

• Like the hidden this object reference in Java

– Use this-> not this.

• static member data and functions work as per Java,
shared between instances, no this pointer

20

Constructors and destructors

21

Constructors and Destructors
• Constructor

– Called when an object is created
– Has function name same as class name
– And no return type (none/empty, NOT void !)

– Adding a constructor makes it impossible to provide a
C-style initialiser. e.g. = {0,1,2};

• Look back at the slides on initialisers for structs in C
• No constructor => you can use the C-style initialiser

• Destructor (similar to Java finalize)

– Called when an object is destroyed
– A function with name ~ then class name

• E.g.: ~DemoClass()

– And no return type

22

Example C++ class
class DemoClass
{
public:

DemoClass()
{ }

~DemoClass()
{ }

int GetValue() const { return m_iValue; }

void SetValue(int iValue) { m_iValue = iValue; }

private:
int m_iValue;

};

Constructor
No return type

Destructor
No return type

Accessor
Access only, no changes
Ideally label the function

with keyword ‘const ’
(see later lecture for why)

Mutator. Mutates/changes the object

Data member/member variable/attribute

23

Constructor parameters

• You can pass parameters to constructors
• You can have multiple constructors

– Which differ in which parameter types they expect
– The compiler will consider which parameters are

passed in order to determine which constructor to use
• In the same way as functional overloading

– You are probably used to this from Java

• General C++ rule: if your code introduces
ambiguity (i.e. this could mean A or B) then it
will not compile
– If the constructor that the compiler should call is

ambiguous, the code will not compile!

24

Passing parameters to constructors

1. Create a constructor which takes
parameters

– e.g. a constructor which takes an int :

DemoClass(int iValue)

{ … } // In class DemoClass

2. To create an object on the stack , passing
values to constructor use:
DemoClass myDemoClass (4) ;

25

Default parameters
• In C++, parameters can have default values

– So can parameters in constructors

• Use the ‘= <value> ’ syntax following the
parameter declaration

• e.g.: DemoClass(char* dummy,

int iValue = -1)

{ /*Nothing*/ }

• Will match any of the following:
DemoClass myDemoClass3("Temp", 3);

DemoClass myDemoClass4("Temp");

• Default values appear only in the function
declaration , not any separate definition

26

Default Constructor

• The ‘Default Constructor’ is a constructor
which can be called with no parameters
– e.g. one which has no parameters
– or has default values for all parameters
– A class can only have one default constructor

• More would introduce ambiguity

• When you create arrays of objects, the
default constructor is used (because no
parameters are provided):
e.g.: DemoClass myDemo Array[4] ;

27

Constructor parameters or not?

• Create an object, using default constructor
DemoClass myDemoClass1;

• Or create an object, passing values to the
constructor (selects the constructor to use)
DemoClass myDemoClass3("Temp");

IMPORTANT: Do NOT add empty brackets ()
when constructing on the stack if there are no
parameters!

– Compiler thinks you are declaring a function
– e.g. DemoClass myDemoClass1(); // WRONG!!!

28

Basic types

• Basic types can be initialised in the same
way as classes (using the brackets)

• Create an int (we have seen this a lot)
int iVal = 4; // Initialisation!

• The () form can also be used for basic types
int iVal (4); // Initialisation!

• Both do exactly the same thing

29

Initialisation list
• Initialisation list allows you to pass values to:

– Data member constructors
– Base class constructors

• Uses the () form of initialisation
– i.e. initialisation values to use are inside ()

• Uses the : operator following the constructor
parameters (before the opening brace):
DemoClass(int iValue)

: m_iValue(iValue)

{}
Initialisation list, comma separated

Example Initialisation List
class DemoClass
{
public:

DemoClass(int iValue)
: m_iValue(iValue)
{ … }

~DemoClass() { … }

int GetValue() { return m_iValue; }

void SetValue(int iValue) { m_iValue = iValue; }

private:
int m_iValue;

};

30

31

Two ways to set member values
• With an int type data member called m_iValue

• Compare the following:
DemoClass(int iValue)

: m_iValue(iValue)

{}

• With the following:
DemoClass(int iValue)

{

m_iValue = iValue;

}

• Question: Are these the same?

Initialisation vs Assignment (1)
class DemoClass
{
public:

DemoClass(int iValue)
: m_iValue(iValue)
{ … }

DemoClass(int iValue)

{

m_iValue = iValue;

}

…

32

Note: You could only have ONE of the following
in a class, since they have the same parameters

m_iValue is initialised
with value iValue

m_iValue is created
but not initialised

then the value of iValue
is assigned to it

If it was an object (of type struct/class) it would
be initialised using default constructor,

then assigned
i.e. value would be set twice!

33

Initialisation vs Assignment (2)
• Compare the following:

1) int i = 4; // Initialisation

2) int j; // Uninitialised
j = 4; // Assignment

• Initialisation lists are used a LOT in C++
– Should be used in preference to member assignment

• Not available in Java!
• In Java you use super() to pass parameters to base class

constructor, and then just assign values to members in
the constructor
– In C++ you use the initialisation list for both

• Initialisation list can be faster in some cases
– Avoids work from an unnecessary default constructor

34

Member data initialisation

• Member data is NOT always initialised
– Basic types and pointers (e.g. int ,

short or char*) are NOT initialised
• You should always initialise them

– Default constructor is called for
members of type class/struct unless you
say otherwise (using initialisation list)

BIG WARNING TO YOU!!!!
(I am warning you because the compiler won’t!)

35

Inline functions
Member functions and data

36

Inline functions
• Inline functions act exactly like normal functions but no

function call is made (code is put in caller function)
• Use the keyword ‘inline ’, e.g.:

inline int max(int a, int b)

{ return a>b ? a : b; }

printf("%d\n", max(12,34));

• Similar to a ‘safe’ macro expansion
– Safely replaces the function call with the code

• Unlike a macro (#define)

– Avoids the overhead of creating a stack frame
– Code gets included in EVERY file/function which calls it

• VERY useful for small, fast functions
• It is advice only: compiler can decide to ignore you

37

Function definitions ‘outside’ the class

• IN professional code, member functions are usually
defined outside of the class declaration
– In Java they are always defined within the class declaration, with

one class per file

• In C++ you usually have:
– Function declaration inside class declaration
– Function definition somewhere else

• With a ‘label’ to say it is a class member
• We use the scoping operator :: to label it

– Reason: allows hiding of the implementation
• Good program design, that Java’s policy makes very hard to do

• Defining functions within the class declaration implicitly
makes them inline
– As if they had ‘inline ’ on them

Class Declaration and Definition
class DemoClass
{
public:

DemoClass(int iValue = -1)
: m_iValue(iValue)
{ … }

~DemoClass() { … }

int GetValue() { return m_iValue; }

void SetValue(int iValue) { m_iValue = iValue; }

private:
int m_iValue;

};

38

These are all inline functions.
Do not actually exist in executable

as functions – their code is
included INLINE in the caller

39

Defining class member functions

class DemoClass
{
public:

DemoClass
(int iValue = -1);

~DemoClass();

int GetValue();

void SetValue(
int iValue);

private:
int m_iValue;

};

#include "DemoClass.h"

DemoClass::DemoClass
(int iValue)

: m_iValue(iValue)
{ … }

DemoClass::~DemoClass()
{ … }

int DemoClass::GetValue()
{ return m_iValue; }

void DemoClass::SetValue(
int iValue)

{ m_iValue = iValue; }

DemoClass.h DemoClass.cpp

40

Note: Default value

class DemoClass
{
public:

DemoClass
(int iValue = -1);

~DemoClass();

int GetValue();

void SetValue(
int iValue);

private:
int m_iValue;

};

#include "DemoClass.h"

DemoClass::DemoClass
(int iValue)

: m_iValue(iValue)
{ … }

…

DemoClass.h DemoClass.cpp

Functions in C++ can have default values
for parameters. Specify these in the
function declaration, not the definition

Demo lecture

• Please try the coursework lab A BEFORE the
demo lecture

• The coursework framework
– Class files and header files
– Function definitions outside the header file
– Constructors and destructors

• Initialisation list

– Inline functions
– Mainfunction.cpp

• Also, inheritance (single) – base classes
– Base class : BaseGameEngine

41

42

Next lecture

• new and delete

• Inheritance

• Virtual functions

